Cholesterol lowering activity of homoeopathic preparations of Colchicum autumnale – An in vitro study

Nithya T
Department of Case Taking and Repertorisation, Government Homeopathic Medical College, Kozhikode, Kerala, India, nithya9496bhms@gmail.com

Mansoor Ali KR
Department of Case Taking and Repertorisation, Government Homeopathic Medical College, Kozhikode, Kerala, India, similima@yahoo.com

Sheeba Veluthoor
Core Valleys Herbal Technologies Pvt. Ltd., Kozhikode, Kerala, India, sheeba@corevalleysherbals.in

U S Jijith
Department of Pharmacy, Government Medical College, Kozhikode, Kerala, India, jijithus@gmail.com

P Sithara Perveen
Department of Case Taking and Repertorisation, Government Homeopathic Medical College, Kozhikode, Kerala, India, sithara.perveen@gmail.com

See next page for additional authors

Follow this and additional works at: https://www.ijrh.org/journal
Part of the Homeopathy Commons

How to cite this article
Cholesterol lowering activity of homoeopathic preparations of Colchicum autumnale – An in vitro study

Abstract

Background: Total cholesterol content of erythrocyte membranes plays a critical role in atherosclerotic plaque progression and instability. Several homoeopathic medicines are known to have a significant role in the control of hyperlipidaemia. Colchicum autumnale is a plant remedy used mainly for gout, but also for hyperlipidaemia.

Objectives: This is a study to assess the in vitro anti-cholesterol action of the Colchicum autumnale (Colch. at.) on the erythrocyte membrane. Materials and Methods: The study was conducted using a hyperlipidaemic blood sample which was divided into eight parts. Six different potencies of Colch. at. were tested, and two controls, one negative and another positive were used. Cholesterol was estimated using Liberman Burchard reagent and spectrophotometry.

Results: In a hyperlipidemic blood sample, the range of reduction of cholesterol concentration was from 18.20% to 19.16%. The 6C potency removed 18.24% of cholesterol, 12C potency removed 18.50% cholesterol, 30C potency removed 19.02% cholesterol, 200C potency removed 19.68% cholesterol and 10M potency removed 19.16% cholesterol. The maximum effect was seen in 1M potency where the reduction was 19.68 %.

Conclusion: This study suggests that the Colchicum autumnale might be useful for the management of hypercholesterolemia.

Acknowledgments and Source of Funding

Authors are thankful to the research laboratory of the Government Homeopathic Medical College, and Core Valleys Herbal Technologies Pvt Ltd., Kozhikode, Kerala for providing biochemistry and laboratory facilities.

Authors

This original article is available in Indian Journal of Research in Homoeopathy: https://www.ijrh.org/journal/vol16/iss3/3
Cholesterol lowering activity of homoeopathic preparations of *Colchicum autumnale* – An *in vitro* study

1Department of Case Taking and Repertorisation, Government Homeopathic Medical College, Kozhikode, Kerala, India, 2Core Valleys Herbal Technologies Pvt. Ltd., Kozhikode, Kerala, India, 3Department of Pharmacy, Government Medical College, Kozhikode, Kerala, India

Abstract

Background: Total cholesterol content of erythrocyte membranes plays a critical role in atherosclerotic plaque progression and instability. Several homoeopathic medicines are known to have a significant role in the control of hyperlipidaemia. *Colchicum autumnale* is a plant remedy used mainly for gout, but also for hyperlipidaemia. **Objectives:** This is a study to assess the *in vitro* anti-cholesterol action of the *Colchicum autumnale* (Colch. at.) on the erythrocyte membrane. **Materials and Methods:** The study was conducted using a hyperlipidaemic blood sample which was divided into eight parts. Six different potencies of Colch. at. were tested, and two controls, one negative and another positive were used. Cholesterol was estimated using Liberman Burchard reagent and spectrophotometry. **Results:** In a hyperlipidemic blood sample, the range of reduction of cholesterol concentration was from 18.20% to 19.16%. The 6C potency removed 18.24% of cholesterol, 12C potency removed 18.50% cholesterol, 30C potency removed 19.02% cholesterol, 200C potency removed 19.68% cholesterol and 10M potency removed 19.16% cholesterol. The maximum effect was seen in 1M potency where the reduction was 19.68 %. **Conclusion:** This study suggests that the *Colchicum autumnale* might be useful for the management of hypercholesterolemia.

Keywords: Cholesterol, *Colchicum autumnale*, Hyperlipidaemia, *In vitro*

Introduction

Hyperlipidaemia is estimated to cause 2.6 million deaths (4.5% of total) and 29.7 million disability-adjusted life years (DALYS), or 2.0% of total DALYS. It may be the major explanation for disease burden in both the developed and developing countries as a risk factor for ischemic heart condition and stroke.1

India is undergoing a rapid epidemiological transition with increasing population, economic prosperity, urbanization and ageing with associated risk factor transition.2 About 79% of the population had abnormalities in one of the lipid parameters. According to the Indian Council of Medical Research-INDIA diabetes study, hyperlipidaemia is more common in rural and urban areas. Indians are known to have a unique pattern of dyslipidaemia with lower high-density lipoprotein cholesterol, increased triglyceride levels and higher proportion of low-density lipoprotein cholesterol, and there have been no large-scale representative studies on dyslipidaemia to assess the magnitude of the problem.3

Many studies suggest that the total cholesterol content of erythrocyte membranes also might play a critical role in atherosclerotic plaque progression and instability.2 Total cholesterol level is the widely used measurement for diagnosing hypocholesterolemia.3

The main aim of treatment in patients with hyperlipidaemia is to scale back the danger of developing ischemic heart disease or the occurrence of further cardiovascular or cerebrovascular disease. In conventional treatment, statins and fibrates are common lipid-modulating agents, and a more modern lipid-lowering agent, alirocumab (Praluent), has recently been approved for the treatment of dyslipidaemia.4

Address for correspondence: Dr. T. Nithya, Department of Case Taking and Repertorisation, Government Homeopathic Medical College, Kozhikode - 673 010, Kerala, India. E-mail: nithya8946@gmail.com

Received: 27 August 2021; Accepted: 26 August 2022

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

At present, available hypolipaemic drugs are related to a variety of side effects. The consumption of synthetic drugs results in hyperuricemia, diarrhoea, nausea, myositis, gastric irritation, flushing, dry skin and abnormal liver function. Moreover, several herbal drugs are also advocated for hypolipaemic actions. Due to these concerns, it is necessary to develop alternative natural therapies against hyperlipidaemia.

Plant products are frequently considered to be less toxic and free from side effects than synthetic ones. Plants play a serious role in the introduction of new therapeutic agents and have received much attention as sources of biologically active substances including antioxidants, hypoglycaemics and hypolipaemias.

Homoeopathic medicines are prepared from traces of animal, plant, mineral and other natural substances, by standard methods called dynamisation or potentization, which comprises of successive dilutions and succussions.

Colchicum autumnale is a biennial plant under the lileacea family. The active principle, colchicine, is a bitter poisonous alkaloid. It is frequently used as an ingredient in many medicines especially used for gout and rheumatic complaints. It also contains some bioactive substances like polyphenols, the foremost abundant (poly)-phenolic compounds are lignans, flavonoids, phenolic acids and tannins. This reveals that it has significant antioxidant activity.

The first proving of Colch. at. was carried out by Anton Storck before Hahnemann and several symptoms were produced in a healthy man. Staft and Von Reil followed a systematic proving. The experiment was carried out on 17 provers, of whom ten were men and seven women, using the potencies: 6X, 6C and 30C. Dr. Othon Andre Julian from materia medica of new homoeopathic medicine has also mentioned about its effect on hyperlipidaemia. Colch. at. is also added by Dr. Frederick Schroyens in the generalities chapter of synthesis repertory under the rubric hyperlipidaemia.

There have been various in vitro experiments performed on the plant, animal and human cellular models to plausibly explaining the action of these ultra-high diluted medicines. There are only a few in vitro and clinical verification studies conducted in homoeopathy on hyperlipidaemia. Therefore, this study is an attempt to evaluate the action of Colch. at. in different potencies in hyperlipidaemic samples through an in vitro assay.

The amount of cholesterol can be determined using the colour reagent method measuring the optical density or absorbance of the coloured complex.

Materials and Methods

Study setting

The study was conducted at Core Valleys Herbal Technologies Pvt. Ltd., laboratory. Nallalam, Kozhikode, Kerala, India.

Study design

An in vitro study was conducted with six potencies of a homoeopathic medicine, Colch. at in hyperlipidaemic blood sample. The sample was divided into eight equal parts. One was taken as positive control using atorvastatin and another as negative control using ethanol, while the rest were tested using 6C, 12C, 30C, 200C, 1M and 10M potencies of Colch. at.

Drugs and chemicals

Homoeopathic preparations of Colch. at. with different potencies (6C, 12C, 30C, 200C, 1M and 10M) were obtained from standard GMP-certified manufacturer of homoeopathic medicines (SBL, GMP and ISO 9001 certified Company). Liebermann Burchard reagent was standardised using 0.5ml acetic anhydride and 0.5 mL H$_2$SO$_4$. All other chemicals and reagents were of analytical grade. A hyperlipidaemic blood sample was collected from the medical laboratory of Government Homoeopathic Medical College.

Methods

The study was conducted using a hyperlipidaemic blood sample of a patient diagnosed with hyperlipidaemia with an initial concentration of total cholesterol of 210 mg/dL. The duration of the study was 2 days. Experiments were standardized in the laboratory with the help of a biochemist. As an anticoagulant agent, EDTA was added. Blood was centrifuged using a centrifuging tube at 1000 rpm for 5 min to separate plasma and red blood cells.

After washing with distilled water, the glass wares were dried using an oven.100 mg of red blood cell was weighed and taken in a dried test tube and diluted using 20 mL of water and converted to 500 mL/dL red blood cell. 2 mL of this solution was taken in eight dried test tubes, respectively. Among these one test tube was taken negative control using ethanol, and another was taken as a positive control using atorvastatin (5 mg).

Moreover, the remaining test tubes were added with 0.5 ml of various six potencies of Colch. at.

Cholesterol estimation using Lieberman Burchard reagent

In each test tube, 1 mL of Lieberman Burchard reagent was added. A greenish-brown colour appeared, and there was a slight change in the intensity of colour based on the medicinal added. A greenish-brown colour appeared, and there was a slight change in the intensity of colour based on the medicinal added. A greenish-brown colour appeared, and there was a slight change in the intensity of colour based on the medicinal added.

The reading was taken using ultraviolet Vis spectrophotometry. Optical density was measured by setting 420 nm wavelength.
RESULTS

After adding *Colch. at.* potencies in hyperlipidaemic blood, the spectrophotometric reading was 0.623 for 6C potency, 0.621 for 12C potency, 0.617 for 30C potency, 0.614 for 200C potency, 0.612 for 1M potency and 0.616 for 10 M potency. The negative control showed the value same as that of the hyperlipidaemic sample and reagent, that is, 0.762 and the positive control showed 0.553.

The percentage of cholesterol removed from each sample was calculated using the following formula:

\[(\text{Absorbant reading of control}−\text{Absorbant reading of sample})/\text{(Absorbant reading of control)}*100\]

In a hyperlipidaemic blood sample, the range of reduction of cholesterol concentration was from 18.20% to 19.16%. 6C potency removed 18.24% of cholesterol, 12C potency removed 18.50% cholesterol, 30C potency removed 19.02% cholesterol, 200C potency removed 19.68% cholesterol and 10M potency removed 19.16% of fats. The maximum effect was seen in 1M potency, where the reduction was 19.68%. Figure 1 shows different potencies of *Colch. at.* and percentage of cholesterol reduction in the hyperlipidaemic sample.

DISCUSSION

A review published in the year 2015 has positively highlighted the role of homoeopathy in dyslipidaemia, suggesting future research on pragmatic and qualitative designs.[12] Another *in vitro* study conducted on the effect of polyphenols extracts from *Brassica* vegetables on erythrocyte membranes revealed that the cholesterol concentrations in membranes of hypercholesterolemic erythrocytes were lowered after incubation with the extract.[13]

As mentioned earlier, *Colch. at.* is represented as one mark medicine in the Synthesis repertory.[9] The present study suggests that *Colch. at.* can reduce cholesterol, most effectively with 1M potency.

In this study, the reduction of cholesterol concentration was from 18.20% to 19.16%. Further studies are needed to identify the hypolipidaemic or hypercholesterolemic activity of *Colch. at.*

CONCLUSION

The study suggests that *Colch. at.* might be useful in the treatment of hypercholesterolemia. Further studies are needed to identify the mode of action, as well as effect, of *Colchicum autumnale* in hyperlipidaemic samples. Further, as this in vitro study was for only 2 days, and the duration of action of this medicine is 14–20 days, more reliable results are expected in clinical trials with follow-ups of longer duration.

ACKNOWLEDGEMENT

Authors are thankful to the research laboratory of the Government Homeopathic Medical College, and Core Valleys Herbal Technologies Pvt ltd., Kozhikode, Kerala for providing biochemistry and laboratory facilities.

Financial support and sponsorship

Nil.

Conflicts of interest

None declared.

REFERENCES

Activité hypocholestérolémiant des préparations homéopathiques de *Colchicum autumnale* - une étude in vitro

Le contexte: Le contenu en cholestérol total des membranes érythrocytaires (CEM) joue un rôle critique dans la progression et l’instabilité des plaques d’athérosclérose. Plusieurs médicaments homéopathiques sont connus pour leur rôle important dans le contrôle de l’hyperlipidémie. *Colchicum autumnale* est un remède végétal utilisé principalement pour la goutte, mais aussi pour l’hyperlipidémie. **Objectif:** Il s’agit d’une étude visant à évaluer l’activité hypocholestérolémiant in vitro du *Colchicum autumnale* (Colch. at.) sur la membrane érythrocytaire. **Matériaux et méthodes:** L’étude a été menée en utilisant un échantillon de sang hyperlipidémique qui a été divisé en huit parties. Six puissances différentes de Colch. at. ont été testées, et deux contrôles, un contrôle négatif et un positif, ont été utilisés. Le cholestérol a été estimé en utilisant le réactif Liberman Burchard et la spectrophotométrie. **Résultat:** Dans un échantillon de sang hyperlipidémique, l’intervalle de réduction de la concentration de cholestérol était de 18,20 % à 19,16 %. La puissance 6C a éliminé 18,24 % du cholestérol, la puissance 12C a éliminé 18,50 % du cholestérol, la puissance 30C a éliminé 19,02 % du cholestérol, la puissance 200C a éliminé 19,68 % du cholestérol et la puissance 10M a éliminé 19,16 % du cholestérol. L’effet maximal a été observé dans la puissance 1M où la réduction était de 19,68 %. **Conclusion:** Cette étude suggère que le *Colchicum autumnale* pourrait être utile dans la gestion de l’hypercholestérolémie.
quitó el 19.68% del colesterol y 10M potencia quitó el 19.16% del colesterol. El efecto máximo se observó en la potencia de 1M, donde la reducción fue del 19.68%. **Conclusión:** Este estudio sugiere que el *Colchicum autumnale* podría ser útil para el manejo de la hipercolesterolemia.

秋水仙同型制剂降胆固醇活性的体外研究

背景资料： 红细胞膜（CEM）的总胆固醇含量在动脉粥样硬化斑块进展和不稳定性中起关键作用。已知几种顺势疗法药物在控制高脂血症中具有重要作用。秋水仙是一种植物疗法，主要用于痛风，但也用于高脂血症。

目标： 这是一项评估秋水仙的体外降胆固醇活性的研究。

材料和方法： 该研究是通过使用高脂血症血液样本进行的，该血液样本分为八个部分，科尔切斯特的六种不同效力。进行了测试，并使用两个对照，一个阴性对照和另一个阳性对照。使用利伯曼·伯查德试剂和分光光度法估计胆固醇。

结果： 在高脂血症血液样本中，胆固醇浓度降低的范围为18.20%至19.16%。6c效价去除了18.24%的胆固醇，12c效价去除了18.50%的胆固醇，30C效价去除了19.02%的胆固醇，200c效价去除了19.68%的胆固醇。在1m效力中看到最大效果，其中减少量为19.68%。

结论： 这项研究表明秋水仙可能是高胆固醇血症的管理有用。