• Users Online:1198
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 10  |  Issue : 1  |  Page : 52-58

Significant enhancement of dielectric and conducting properties of electroactive polymer polyvinylidene fluoride films: An innovative use of Ferrum metallicum at different concentrations


1 Centre for Interdisciplinary Research and Education, 404 B, Jodhpur Park, Kolkata; Department of Physics, Jadavpur University, West Bengal, India
2 Centre for Interdisciplinary Research and Education, 404 B, Jodhpur Park, Kolkata; Department of Physics, Jogamaya Devi College, Kolkata, West Bengal, India
3 Centre for Interdisciplinary Research and Education, 404 B, Jodhpur Park, Kolkata; Department of Physics, Jadavpur University; Department of Physics, n Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
4 Centre for Interdisciplinary Research and Education, 404 B, Jodhpur Park, Kolkata, West Bengal, India
5 Central Council for Research in Homoeopathy, New Delhi, India

Correspondence Address:
Papiya Nandy
Centre for Interdisciplinary Research and Education, Kolkata - 700 068, West Bengal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-7168.179154

Rights and Permissions

Background: There are experimental evidences of nanoparticle aspect of homoeopathic medicine. It has also been established that the size of these nanoparticles (NPs) decrease with increase in potency. Aim: We have used this aspect of homoeopathic medicines in some technical applications. Here, to improve the electrical properties of an electroactive polymer, poly (vinylidene fluoride-hexa-fluoropropylene) (PVDF-HFP), we have incorporated in the polymer film, a very novel and unique probe Ferrum metallicum (FeM), a homoeopathic medicine, the size of which can be changed by dilution, followed by controlled agitation. Settings and Design: The composite film was synthesized by solution-casting technique. Using standard procedures, the characterization studies by X-ray diffraction, field-emission scanning electron microscope, and Fourier transform infrared spectroscopy were performed to check the incorporation of the NPs in the film. Material and Method: Each sample was freshly prepared 2 times by doping FeM in PVDF-HFP matrix using solution-casting technique, and the experiment was repeated with each sample for 5 times. Statistical Analysis: This being a continuous data recording, error bars cannot be shown. We have presented the graphs which have been repeated maximum number of times. Result and Conclusion: Our result shows that the electrical properties such as dielectric constant, tangent loss, and electrical conductivity of these polymer films get significantly modified due to incorporation of this homoeopathic nanomedicine and the effect increases with the increase in concentration of the probe up to a critical value. These FeM-incorporated PVDF-HFP films will have potential applications as high-energy storage devices such as multilayered high-charge storage device.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2199    
    Printed61    
    Emailed0    
    PDF Downloaded327    
    Comments [Add]    
    Cited by others 7    

Recommend this journal