• Users Online:1042
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2013  |  Volume : 7  |  Issue : 3  |  Page : 103-108

Pharmacognostic evaluation of Heliotropium peruvianum L.: A homoeopathic drug


1 Chemistry Section, Hyderabad, Andhra Pradesh, India
2 Pharmacognosy Section, Drug Standardisation Unit, Hyderabad, Andhra Pradesh, India
3 Department of Botany, University College of Science, Osmania University, Hyderabad, Andhra Pradesh, India

Date of Submission19-Jan-2013
Date of Acceptance09-Sep-2013
Date of Web Publication30-Sep-2013

Correspondence Address:
P Subramanian
Drug Standardisation Unit, O. U. B. 32, Road No. 4, Habsiguda, Hyderabad - 500 007, Andhra Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-7168.119109

Rights and Permissions
  Abstract 

Background: Heliotropium peruvianum L., popularly known as "Heliotrope" in English, is a trailing plant belonging to the family Boraginaceae. The leaves and young aerial parts are used as medicine in headache, tension in inner canthus, pressure in the pit of stomach and sternum, uterine displacement and dysmenorrhoea.
Objective: Pharmacognostic and Physico-chemical studies were carried out to facilitate use of correct species and standard raw material to ensure uniformity.
Materials and Methods: Pharmacognostic studies of leaf and young stem of Heliotropium peruvianum were carried out. Physico-chemical parameters of the raw drug, viz., extractive values, ash values, formulation, besides weight per milliliter, total solids, alcohol content, along with high performance thin layer chromatography (HPTLC) and ultraviolet visible (UV-vis) studies were worked out for mother tincture.
Results: The leaves are elliptically long, dark green above and silvery white beneath. The sides of epidermal cells of leaf in surface view are straight to curved and wavy on the adaxial side and wavy to sinuate on the abaxial side. Papillate cells occur on the adaxial side. Stomata are few, anomocytic and restricted to the abaxial side. Unicellular conical and uniseriate conical hairs with thick walls occur on the leaf. In transverse section (TS), the leaf at midvein is shield like, slightly ridged on the adaxial surface and prominently ribbed towards the abaxial surface. Epidermal cells on the adaxial side are larger and interrupted by large encircling epidermal cells around trichomes. Parenchyma is four to five layered and often contains sphearaphides. The phloem also possesses sphaeraphidal idioblasts. The young stem is oval in TS. Vascular tissue form of a continuous ring.
Conclusion: The powder microscopic features and organoleptic characters along with anatomical and Physico-chemical studies, besides HPTLC fingerprinting are diagnostic to establish the standards for the drug.

Keywords: Drug standardisation, Heliotropium peruvianum L., High performance thin layer chromatography, Homoeopathic pharmacognosy, Physico-chemical


How to cite this article:
Subramanian P, Rao P P, Sudhakar P, Reddy T S, Reddy P R. Pharmacognostic evaluation of Heliotropium peruvianum L.: A homoeopathic drug. Indian J Res Homoeopathy 2013;7:103-8

How to cite this URL:
Subramanian P, Rao P P, Sudhakar P, Reddy T S, Reddy P R. Pharmacognostic evaluation of Heliotropium peruvianum L.: A homoeopathic drug. Indian J Res Homoeopathy [serial online] 2013 [cited 2019 Nov 12];7:103-8. Available from: http://www.ijrh.org/text.asp?2013/7/3/103/119109


  Introduction Top


Heliotropium peruvianum L. (Syn. Heliotropium arborescence L.), commonly known as "Heliotrope" or Cherry Pie in English, belongs to the family Boraginaceae. It is a native of Peru and is also grown as an ornamental plant in Indian gardens. [1] The aerial parts are used in the preparation of homoeopathic medicine. The young aerial parts are used in sore thorat, uterine displacement with active bearing-down sensation and dysmenorrhoea. [2] It is also known to be used for pain in forehead, feeling of tension in the left inner canthus, pressure in the pit of stomach, pressure and oppression of the external parts of the chest and pain in outer portion of the leg above the ankle. [3] The homoeopathic authority is given in Archiv. f. Hom, 19, pt. 1 p. 188. It also finds mention in Homoeopathic Pharmacopoeia of United States. [4] Chemically, it is reported to contain heliotropin, vanillin, cynoglossin, heliotrine, benzaldehyde, benzyl acetate, p-anisaldehyde, lithospermic acid, lithospermic acid B and caffeic acid. [5],[6] Pyrrolizidine alkaloids, viz., heliotrine, present in the plant are reported to possess hepatotoxic effect in humans and is also responsible for causing "Gulran disease," an epidemic in Afghanistan. [7]

Earlier studies on Heliotropium peruvianum pertaining to pharmacognostic and Physico-chemical parameters, in general, and with a homoeopathic perspective, in particular, are not available. Hence, the authors have conducted detailed pharmacognostic and Physico-chemical standardisation studies on the leaves and young stem of the drug as per the protocols suggested by Central Council for Research in Homoeopathy (CCRH).


  Materials and Methods Top


Pharmacognosy

The leaves and young aerial parts of Heliotropium peruvianum were supplied by the Survey of Medicinal Plants and Collection Unit of CCRH at Nilgiris, fixed in formaldehyde: Acetic acid: Alcohol (FAA), processed for microtomy (paraffin method), sectioned, stained and permanent slides were prepared following the procedure of Johansen. [8] The epidermal peels of leaf were obtained by gently scraping and peeling with razor blade. The microtome sections in transverse section (TS) and longitudinal section (LS) were obtained at 6-8 μm thickness on Leica RM 2155 microtome. The powder microscopy characters were studied by boiling the powder drug in distilled water, staining in saffranin and mounting with glycerine. Photomicrography was done with Olympus B × 53 research trinocular microscope.

Physico Chemical Properties

The air-dried young aerial parts of the drug were coarsely powdered to 10/44 (sieve size) and subjected to determination of moisture content (loss on drying at 105΀C), total ash content, water-soluble ash content, acid-insoluble ash content, extractability in different solvents, Physico-chemical constants, High-Performance Thin Layer Chromatography (HPTLC) and ultraviolet (UV) aspects of mother tincture, following official methods. [9],[10],[11],[12] Mother tincture was prepared as per Homoeopathic Pharmacopoeia of India (HPI). [9] In this method, 100 g of coarse powder of the drug was suspended in 680 ml of 95% alcohol and 350 ml purified water for 24 hour at room temperature. It was filtered and made up to 1000 ml using the same solvent ratio. Percolation method [9] was used for the preparation of mother tincture.

HPTLC Analysis

Mother tincture was used for the HPTLC study. The mother tincture was diluted in methanol and was spotted in the form of a band with 4-mm width with a Camag microlitre syringe on pre-coated silica gel aluminium plate 60F-254, (5 × 10 cm with 0.25 mm thickness; Merck, Darmstadt, Germany) using a Linomat IV sample applicator (Camag, Muttenz, Switzerland, supplied by Anchrom Technologies, Mumbai, India). A constant application rate of 6 mL/sec was followed. The slit dimension was kept at 4 × 0.45 mm, and a scanning speed of 20 mm/ sec was employed. The mobile phase consisted of chloroform: methanol: Ammonia (7.5:2.4:0.1 v/v/v). Linear ascending development was carried out in a 10 × 10 cm twin trough glass chamber (Camag) at room temperature. The length of the chromatogram run was 9 cm. Subsequent to the development, the thin layer chromatography (TLC) plates were dried in a current of air with the help of hot air dryer in a wooden chamber with adequate ventilation. Derivatisation was done using anisaldehyde-sulphuric acid reagent. The plate was scanned using Camag TLC scanner III in visible light by reflectance scanning operated by CATS 4 software (v 4.05, Camag) resident in the system. [10],[11],[12]


  Observations and Results Top


Pharmacognosy

Macroscopy


Leaves are elliptically long, up to 5 cm, apex acute, margin entire, dark green above and silvery white beneath, rough, undulated, with dense stiff hair; young stem is slender, dark green, densely hairy.

Microscopy

Leaf surface


Epidermal cells six to seven sided, polygonal, isodiametric and anisodiametric, sides thin, straight to curved and wavy on adaxial side and wavy to sinuate on abaxial side [Figure 1]b and c; a few cells on the adaxial surface are papillate. Contents scanty with rod-like structures in a few cells on the adaxial side [Figure 1]b, while they are dense on the abaxial side. Cell number is 3133/mm 2 (on the adaxial side) and 2616/mm 2 (on the abaxial side).
Figure 1: Heliotropium peruvianum (leaf). (a) Leaf adaxial surface showing unicellular conical hair, ×111, (b) leaf adaxial surface, ×263, (c) leaf abaxial surface, ×424 (Uc: Unicellular conical hair, Us: Uniseriate conical hair, Ad: Adaxial surface, Tb: Trichome base, St: Stomata, Ab: Abaxial surface)

Click here to view


Trichomes are of two types: (1) unicellular conical, distributed common, all over, more on veins, surrounded by conspicuously thick-walled encircling cells and (2) uniseriate conical, two to five celled, rare and distributed all over [Figure 1]a and b.

Stomata are on the abaxial surface only, anomocytic of both small and large size, subsidiaries indistinct, rare, stomatal frequency (SF) 83/mm 2 . Stomatal Index (SI) 3.086, size 16-32 μm (26) in diameter [Figure 1]c.

Transection

Leaf at midvein is shield-like, slightly ribbed adaxially and prominently ribbed on the abaxial side, 238-410 μm (330) thick. Lamina is dorsiventral, undulated, 43-130 μm (82) thick with covering hairs over the surface [Figure 2]a and b.
Figure 2: Heliotropium peruvianum (leaf and young stem). (a) TS of leaf at midvein, ×126, (b) TS of leaf lamina, ×521, (c) TS of stem, ×74 (P: Palisade, e: epidermis, Uc: Unicellular conical hair, Co: Collenchyma, Vb: Vascular bundle, Cr: Sphaeraphidal crystals, Sp: Spongy parenchyma, Abe: Abaxial epidermis, C: Cortex, Pi: Pith, Vt: Vascular tissue)

Click here to view


Epidermis is single layered, cells are large on the adaxial side and are interspersed by thick-walled encircling cells surrounding the trichomes; they are tabular to barrel-shaped, oval to spherical; cells are conspicuously small on the abaxial side and are interspersed with stomata and conical hair [Figure 2]a and b.

Ground tissue of midvein consists of collenchyma and parenchyma tissues. Collenchyma is present as a group of cells in the adaxial ridge and is three to four layered on the abaxial side, with cells angular thickened. Parenchyma is present as a group of cells on the adaxial side and is four to five layered on the abaxial side; cells are polygonal to spherical, 10-30 μm (25) in diameter, with thin walls, and often with sphearaphides, 16-28 μm (22) in diameter [Figure 2]a.

Palisade is one layered, occupying two-third area of the mesophyll. Cells are 14-22 μm (20) long and 5-14 μm (10) wide and are interspersed with secretory canals. Spongy tissue is two to four layered in tiers or loosely arranged with air spaces at some regions [Figure 2]b.

Vascular tissue of midvein consists of an arc or crescent-shaped vascular bundle, laterally

80-150 μm (120) long and vertically 65-130 μm (90) wide, endarch, conjoint and collateral. Xylem is in radial rows or laterally aligned. Xylem parenchyma is scanty. Phloem is interspersed with sphaeraphides [Figure 2]a. In LS, the vessels/tracheids possess mostly helical and a few scalariform thickenings.

Young stem

In TS oval, up to 2-4 mm thick, surface is undulated and covered by conical trichomes. The epidermis is one layered, often with papillate cells and interrupted by large encircling cells surrounding trichomes. The collenchyma is five to seven layered, cells are polygonal to spherical and angular thickened. Cortical parenchyma is 8-12 layered, in a few cells containing sphaeraphides [Figure 2]c.

The vascular tissue is in the form of a continuous ring [Figure 2]c. The xylem cells in radial rows are interrupted with rays. A vascular cambium is present. In LS, the vessel elements are bordered pitted, helical and scalariformly thickened. The phloem is outside the xylem with phloem parenchyma, bast fibres and sieve elements. The phloem is also interspersed with sphaeraphides. The pith at the centre is abundant and has sphaeraphides in a few cells [Figure 2]c.

Powder Microscopy

  1. Numerous unicellular and uniseriate trichomes, whole or broken
  2. Pieces of cortical tissue with attached tracheary elements
  3. Pieces of brownish stem with epidermis and hypodermal tissues
  4. Pieces of leaf lamina with underlying mesophyll
  5. Few Sphaeraphides
  6. Pieces of epidermis of the adaxial side with cells having curved to wavy walls and conical hair
  7. Few cortical cells with sphaeraphides


Organoleptic characters

Colour - Brownish green

Touch - Smooth

Odour - No characteristic

Taste - No characteristic

Physico-chemical studies

The data obtained in the Physico-chemical study of the raw drug are summarised in [Table 1], and the mother tincture preparation and its standardisation are presented in [Table 2] and [Table 3], respectively.
Table 1: Standardisation of raw drug


Click here to view
Table 2: Formulation of mother tincture (percolation technique[9])


Click here to view
Table 3: Standardisation of mother tincture


Click here to view


Qualitative Phytochemical Tests

Preliminary phytochemical study indicates the presence of alkaloids, saponins, triterpenoids and tannins, besides traces of fixed oils. Moisture content reveals the presence of water in the plant, besides some volatile organic matter. Results of Physico-chemical studies are summarised in [Table 1], [Table 2], [Table 3].

HPTLC Fingerprinting

The profile of chromatographic separation scanned at 254 nm reveals 14 spots. Among them, 5, 13 and 14 spots possess maximum composition at R f 0.26, 0.73 and 0.85, respectively. It is clear that these are characteristic for the studied drug, which will help in identification and authentication of the mother tincture. These are considered as valuable standards in pharmacopoeia. While the chromatogram scanned at 366 nm [Figure 3] and [Figure 4] reveals 14 spots with 5, 12 and 14 showing maximum composition at R f 0.26, 0.73 and 0.86, respectively. At 254 nm, 14 spots appeared at R f 0.07, 0.11, 0.14, 0.17, 0.26, 0.32, 0.35, 0.42, 0.48, 0.53, 0.60, 0.63, 0.73 and 0.85 with variable concentrations, while at 366 nm, 14 spots appeared at R f 0.07, 0.11, 0.14, 0.17, 0.26, 0.32, 0.37, 0.42, 0.45, 0.56, 0.64, 0.73, 0.81 and 0.86. This vital fingerprint parameter with ensure the reliability and reproducibility of the heliotropium peruvianum.
Figure 3: HPTLC densitogram (CHCl3:MeOH: NH3 7.5:2.4:0.1 v/v) of Heliotropium peruvianum L. Q scanned at 366 nm

Click here to view
Figure 4: HPTLC fingerprinting of Heliotropium peruvianum L. Q under 366 nm

Click here to view



  Discussion Top


The diagnostic pharmacognostic characteristics of Heliotropium peruvianum include the following. In TS, midvein is shield like and prominently ribbed on abaxial side. Lamina is dorsiventral, palisade is one layered and interspersed with secretory canals. Hypodermal collenchyma in midvein possesses angularly thickened cells and the parenchyma is scanty often containing sphaeraphides. A single arc or crescent-shaped vascular bundle is present. Phloem is interspersed with sphaeraphides in a few cells. Young stem is oval in TS and covered by conical hairs. The epidermis is one layered and often papillate. The hypodermal collenchyma is angularly thickened. Few cortical cells contain sphaeraphides. The vascular tissue is a continuous ring interrupted by rays. The vessels in LS show bordered pits, helical and scalariform thickenings. The phloem also possesses sphaeraphidal cells. Pith is abundant with sphaeraphides in a few cells.

Physico-chemical Analysis

Physico-chemical analysis of Heliotropium peruvianum is presented in [Table 1], [Table 2], [Table 3]. HPTLC fingerprinting is a precise and accurate tool to authenticate and characterise the drug, which in turn ensures the therapeutic efficacy. The chromatographic scanned values given for absorption at 254 nm and 366 nm of the mother tincture will be specific for the selected solvent system and R f values. Physical parameters, extractive values and the chemical assays carried out are important aspects for standardisation. UV-visible study exhibits three prominent peaks which serve as characteristic standards.


  Conclusion Top


The determined Physico-chemical data, macroscopic and microscopic characters, and the methodology employed in the study help to identify heliotropium peruvianum, the plant authenticity as well as quality, purity and efficacy during the manufacturing of the drug.

 
  References Top

1.Anonymous, A Check list of Homoeopathic Medicinal Plants of India, Revised ed. In: D. Suresh Baburaj, editor. Central Council for Research in Homoeopathy. Ministry of Health and Family Welfare. New Delhi: Govt. of India; 2003. p. 34.  Back to cited text no. 1
    
2.Boericke W. Pocket Homoeopathic Materia Medica and Repertory (Repr. ed). New Delhi, India: Jain Publishing Co.; 1984. p. 459.  Back to cited text no. 2
    
3.Allen TF. The encyclopedia of pure meteria medica. Repr. Ed, Vol. 4. New Delhi, India: B. Jain Publishers; 1982. p. 546.  Back to cited text no. 3
    
4.Homoeopathic Pharmacopoeia of United State Convention, 1993.  Back to cited text no. 4
    
5.Anon., Wealth of India, raw materials. Vol. 6. New Delhi: Publications and Information Directorate, CSIR; 1962. p. 346.  Back to cited text no. 5
    
6.Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants, Vol. 1-4. New Delhi: CDRI., Publication and Information Directorate; 1960-1989.  Back to cited text no. 6
    
7.Karkar F, Akbarian Z, Leslie T, Mustafa ML, Watson J, Van Egmond HP, et al. An outbreak of hepatic veno-occlusive disease in Western Afghanistan associated with exposure to wheat flour contaminated with pyrrolizidine alkaloids. J Toxicol 2010;2010:313280.  Back to cited text no. 7
    
8.Johansen DA. Plant Microtechnique, New York: MacGraw Hill. Book Co.; 1940.  Back to cited text no. 8
    
9.Anonymous, Homoeopathic Pharmacopoeia of India, Vol. 1. New Delhi: Controller of Publications, Ministry of Health and Family Welfare; 1971.  Back to cited text no. 9
    
10.Sethi PD. High performance thin layer Chromatography. New Delhi, India: CBS Publishers and Distributers; 1996.  Back to cited text no. 10
    
11.Wagner H, Bladt S, Zgainski EM. Plant drug analysis, A thin layer chromatography atlas. Berlin, Heidelberg: Springer-Verlag; 1996.  Back to cited text no. 11
    
12.Stahl E. Thin Layer Chromatography, a Laboratory Hand book. Berlin: Springer-Verlag; 1969  Back to cited text no. 12
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
  Introduction
   Materials and Me...
   Observations and...
  Introduction
   Materials and Me...
   Observations and...
  Discussion
  Conclusion
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed2197    
    Printed69    
    Emailed0    
    PDF Downloaded389    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]